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Summary
Objectives: Text categorization has been
used in biomedical informatics for identifying
documents containing relevant topics of inter-
est. We developed a simple method that uses
a chi-square-based scoring function to deter-
mine the likelihood of MEDLINE® citations
containing genetic relevant topic.
Methods: Our procedure requires construc-
tion of a genetic and a nongenetic domain
document corpus. We used MeSH® descrip-
tors assigned to MEDLINE citations for this
categorization task. We compared frequen-
cies of MeSH descriptors between two cor-
pora applying chi-square test. A MeSH de-
scriptor was considered to be a positive indi-
cator if its relative observed frequency in the
genetic domain corpus was greater than its
relative observed frequency in the nongenetic
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domain corpus. The output of the proposed
method is a list of scores for all the citations,
with the highest score given to those citations
containing MeSH descriptors typical for the
genetic domain.
Results: Validation was done on a set of 734
manually annotated MEDLINE citations. It
achieved predictive accuracy of 0.87 with
0.69 recall and 0.64 precision. We evalu-
ated the method by comparing it to three
machine-learning algorithms (support vector
machines, decision trees, naïve Bayes). Al-
though the differences were not statistically
significantly different, results showed that our
chi-square scoring performs as good as com-
pared machine-learning algorithms.
Conclusions:We suggest that the chi-square
scoring is an effective solution to help cat-
egorize MEDLINE citations. The algorithm is
implemented in the BITOLA literature-based
discovery support system as a preprocessor
for gene symbol disambiguation process.

1. Introduction
The proliferation of the biomedical litera-
ture makes it difficult even for experts to
absorb all the relevant knowledge in their
specific field of interest. Effective heuristics
for identifying articles containing relevant
topics would be beneficial both for the in-
dividual researchers and for curation of

biomedical databases. Manual literature
curation is a resource and time-consuming
process that is prone to inconsistencies [1].
Therefore, an automated system which
could correctly determine the relevant
topic of the citation retrieved from a biblio-
graphic database, is needed. This is referred
to as text or document categorization
(DC), which is a process of assigning a text

document to one or more categories based
on its content or topic [2].

A large body of studies has been pub-
lished addressing the problem of DC in
biomedical domain. Most frequently used
approaches include support vector ma-
chines (SVM), decision trees (DT), and
naïve Bayes (NB). Humphrey et al. [3] pre-
sented the technique of automatic indexing
of documents by discipline with broad de-
scriptors that express the general nature
and orientation of the document. Donald-
son et al. [4] used an SVM algorithm to lo-
cate PubMed® citations containing infor-
mation on protein-protein interaction be-
fore they were curated into the Biomolecu-
lar Interaction Network Database. Dobrok-
hotov et al. [5] applied a combination of
natural language processing and probabi-
listic classification to re-rank documents
returned by PubMed according to their
relevance to Swiss-Prot database curation.
Bernhardt et al. [6] developed an auto-
mated method for identifying prominent
subdomains in medicine that relies on
Journal Descriptor Indexing, an automated
method for topical categorization of bio-
medical text. Miotto et al. [7] tested the per-
formance of DT and artificial neural net-
works to identify PubMed abstracts that
contain allergen cross-reactivity informa-
tion. Chen et al. [8] combined an SVM and
a phrase-based clustering algorithm to
categorize papers about Caenorhabditis
elegans. McDonald et al. [9] exploited the
maximum entropy classification principle
to calculate the likelihood of MEDLINE®
abstracts containing quotations of ge-
nomic variation data suitable for anno-
tation in mutation databases. Recently,
Wang et al. [10] used an NB classifier to
speed up the abstract selection process of
the Immune Epitope Database reference
curation. The most popular platforms to



Therefore, a DC algorithm that has a
high categorization speed as well as high
classification accuracy is required. Our ob-
jective was to investigate the benefit of
using the MeSH®-controlled vocabulary as
a representation level of the MEDLINE ci-
tation for DC. We developed and evaluated
a document-ranking technique based on
chi-square test for independence. The chi-
square test for DC was introduced first by
Oakes et al. [17] and Alexandrov et al. [18].
Preliminary results of our work were pre-
sented at AMIA 2008 Annual Symposium
[19]. In this work, we highly extend the
conference paper with a much more rigor-
ous statistical validation methodology on a
larger data set. Our proposed approach is
simple to implement and can be easily inte-
grated into the existing framework of the
BITOLA system. It is able to process the full
MEDLINE distribution in a few hours.

3. Methods

3.1 Pre-processing of the Corpora

MEDLINE is the main and largest literature
database in the biomedical-related fields.
As of this writing, MEDLINE contains
about 17 million citations dated back to the
1950s. MEDLINE citations are manually
annotated using MeSH vocabulary by
trained indexers from the National Library
of Medicine (NLM). MeSH is a controlled
vocabulary thesaurus consisting of medi-
cal terms at various levels of specificity.
There are three types of MeSH terms: main
headings (descriptors), supplementary
concepts, and qualifiers. Descriptors are
the main elements of the vocabulary and
indicate the main contents of the citation.
Qualifiers are assigned to descriptors in-
side the MeSH fields to express a special as-
pect of the concept. Each MEDLINE ci-
tation is manually assigned around 12
MeSH descriptors. The 2008 MeSH, which
was used in this study, contains 24,767
descriptors.

Our statistical procedure requires a ge-
netic and a nongenetic domain corpus. In
order to obtain this, we processed the full
MEDLINE Baseline Repository, up to the
end of 2007, which contains 16,880,015
citations. As the distribution is in XML

format, we extracted the relevant elements
and transformed them into a relational text
format (i.e., one line for each MeSH de-
scriptor occurrence in each citation). A fre-
quency count file was compiled to provide
a frequency distribution of MeSH descrip-
tors in the whole MEDLINE corpus.

A subset of citations, which we call a ge-
netic domain corpus, was extracted from
the MEDLINE corpus to represent geneti-
cally relevant citations. To accomplish this,
the ‘gene2pubmed’ file from the Entrez
Gene repository [20] was downloaded and
used as a reference list for identifying
MEDLINE citations in which gene symbols
occur. A frequency count file was then cre-
ated to provide a frequency distribution of
MeSH descriptors in the genetic domain
corpus. The citations mentioned in the
‘gene2pubmed’ file were removed from the
MEDLINE frequency distribution in order
to provide nongenetic domain corpus.

3.2 Categorization Algorithm

For each of the k MeSH descriptors in the
two frequency lists we applied the Pearson’s
chi-square (X 2) test for independence [21]
to obtain a statistic, which indicates
whether a particular MeSH descriptor m is
independent regarding genetic (G = g) and
nongenetic (G ≠ g) domain corpus. The X 2

test compares the difference between the
observed frequencies (i.e., the actual fre-
quencies extracted from corpora) and the
expected frequencies (i.e., the frequencies
that one would expect by chance alone).
The larger the value of X 2, the more evi-
dence exists against independence [22].

The complete frequency information
needed for the implementation of the X 2

test is summarized in �Table 1 and �Ta-
ble 2 (note that we use the index i to in-
dicate the row of the table and j to indicate
the column of the table). Given two cor-
pora G = g and G ≠ g we created a 2 × 2 con-
tingency table of observed frequencies Oij

for each target MeSH descriptor (M = m)
and other MeSH descriptors (M ≠ m), as
demonstrated in �Table 1. Here the O11 is
the frequency of citations in the genetic
corpus that the target MeSH descriptor is
assigned to and the O21 is the frequency of
citations in the genetic corpus where the
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evaluate DC algorithms in the biomedical
domain are Text Retrieval Conference
(TREC) [11] and Critical Assessment of
Information Extraction systems in Biolo-
gy (BioCreAtIvE) [12]. Classical statistical
methods and machine-learning algorithms
have been shown highly useful for DC in
the area of biomedical informatics. How-
ever, they usually require long computa-
tional times and tedious manual prepara-
tion of training datasets. Here, we fill this
gap by proposing a novel and simple DC al-
gorithm as well as preparation of a training
corpus for saving manual annotation.

2. Background

The methodology we present here was
strongly motivated and is used in support
of our previous work on literature-based
discovery. BITOLA, a biomedical discovery
support system, was designed to discover
potentially new relationships between dis-
eases and genes [13, 14]. Gene symbols are
short acronyms that often create ambi-
guities if used outside the context of gene
names [15]. For example, in the sentence
[16] ‘The inverse association between MR
and VEGFR-2 expression in carcinoma
suggest a potential tumor-suppressive
function for MR’ we need to decide if
‘MR’ stands for ‘mineralocorticoid recep-
tor’ gene or ‘magnetic resonance’ imaging.

Our method is designed to categorize ci-
tations very broadly according to discipline
in order to help disambiguate gene symbols
in the millions of citations in MEDLINE. It
therefore has the potential to filter out non-
relevant (i.e., nongenetics) citations early
on. The problem can be formally described
as a task of assigning a MEDLINE citation
to the genetic or nongenetic domain, based
on its content. More specifically, our task
was to categorize MEDLINE citations into
genetic and nongenetic domain first and
then to detect gene symbols only in the gen-
etic domain citations. Here we address only
the problem of categorization of MED-
LINE citations. We refer to the genetic do-
main as a subset of MEDLINE citations in
which occurrences of gene symbols are
more probable than in any other subset of
citations.



target MeSH descriptor is absent. Likewise,
the O12 is the frequency of citations in the
nongenetic corpus that the target descrip-
tor is assigned to and the O22 is the frequen-
cy of citations in the nongenetic corpus
where the target descriptor is absent. The
grand total N is the total of all four frequen-
cies (i.e., O11 + O21 + O12 + O22). The row
and column totals are denoted with Rs and
Cs with subscripts corresponding to the
rows and columns.

Next we calculated the corresponding
expected frequencies Eij for each table cell,
as demonstrated in �Table 2.

Given the observed and expected fre-
quencies for each MeSH descriptor in both
corpora, the X 2 statistic was calculated as
defined below [21]:

.

If an expected value was less than five, we
applied Yates’s correction for continuity by
subtracting 0.5 from difference between
each observed frequency and its expected
frequency [22]. The limiting distribution of
X 2 statistic for a 2 × 2 contingency table is a
χ2 distribution with one degree-of-free-
dom (df = 1). If the X 2 is greater than the
critical value of 3.84 (p ≤0.05), we can be
95% confident that the particular MeSH
descriptor is not independent of the do-
main and therefore it is more likely a dis-
criminative feature for categorization.

To address the question of the direction
of the association between particular
MeSH descriptor and domain, we also cal-
culated the indicator variable (I) for each
descriptor from the same table. A similar
approach has been introduced by Oakes et
al. [17]. A MeSH descriptor was considered
to be a positive indicator (+) if its relative
observed frequency in the genetic domain
corpus was greater than its relative ob-
served frequency in the nongenetic domain
corpus. On the other hand, a MeSH de-
scriptor was considered to be a negative
indicator (–) if its relative observed fre-
quency in the genetic domain was lower
than its relative observed frequency in the
nongenetic domain corpus.

Descriptors that appear highly fre-
quently (e.g., Humans, Animals, Mice, etc.)

and are thus not meaningful to the algo-
rithm were removed. We built the list of
noninformative MeSH descriptors based
on MEDLINE check tags [23].

The categorization algorithm requires
two inputs: i) frequency profiles of all the
MeSH descriptors with statistically signifi-
cant chi-square scores (X 2 >3.84; p ≤0.05),
noting which descriptors are positive indi-
cators and which are negative, and ii) a set
of citations to be categorized. The algo-
rithm proceeds by reading each MEDLINE
citation in turn and assigning a score to it as
follows:

Score = 0
For each MeSH descriptor

If MeSH descriptor is a positive indi-
cator

Score = Score + 1
Else if MeSH descriptor is a negative

indicator
Score = Score – 1

The output of this process is a list of scores
for all the citations, with the highest total
given to those citations containing MeSH
descriptors typical for the genetic do-
main.

3.3 Benchmark Algorithms

To provide a basis for comparison with the
chi-square-based scoring function ap-
proach described above, we used three ma-
chine-learning techniques, including SVM,
DT, and NB. Decision to use SVM, DT, and
NB classifiers was totally arbitrary, based
on a list of top 10 algorithms in machine
learning [24].We refer the reader to [25] for
more detailed information about the ma-
chine-learning algorithms we used. We
used SVM implementation in the LIBSVM
software library with polynomial kernel
[26]. The parameters γ and r were set to de-
fault value 1. The kernel degree d together
with the SVM penalty parameter C were
optimized by nested cross-validation over d
values {1, 2, 3} and C values {0.01, 1, 100}
[27]. For each learning algorithm we
conducted four experiments with the fol-
lowing inputs for each MEDLINE citation:
i) title, ii) abstract, iii) title and abstract,
and iv) MeSH terms.

The first step is to transform text data
into a representation that is suitable for
classification methods to use. For title and
abstract field citation indexing was per-
formed at the word level by applying a
standard vector space model. A vector rep-
resentation of citations based on word con-
tent was created, in which each distinct
word is an orthogonal dimension in the
vector space (bag-of-words). General Eng-
lish stopwords were removed by using the
standard SMART stopword list [28]. After
lowercasing the characters, the Lovins
stemming algorithm was used to reduce
words to their base forms [29]. In the last
step we removed all words with document
(citation) frequency less than two. Each of
the remaining feature stems represents a
dimension in the vector space. The feature
counts for the citation vectors were then
weighted by the TF-IDF scheme [30],
which combines the frequency of a term in
the citation and in the citations collec-
tion as well. The citation vectors were then
normalized to unit length, so that ab-
normally long or short citations did not
adversely affect the training process.
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Table 1 Contingency table of observed fre-
quencies for target MeSH descriptor. Note: M =
MeSH descriptor; G = corpus; Oij = observed fre-
quency; Ri = row total; Cj = column total; N =
grand total.

Table 2 Calculation of expected frequencies
for target MeSH descriptor. Note: M = MeSH de-
scriptor; G = corpus; Eij = expected frequency;
Ri = row total of observed frequencies; Cj = col-
umn total of observed frequencies; N = grand
total of observed frequencies.

G = g G ≠ g

M = m O11 O12 = R1

M ≠ m O21 O22 = R2

= C1 = C2 = N

G = g G ≠ g

M = m E11 = (R1 × C1) / N E12 = (R1 × C2) / N

M ≠ m E21 = (R2 × C1) / N E22 = (R2 × C2) / N



3.4 Threshold Optimization and
Performance Evaluation

The manual categorization was considered
as a gold standard. In order to create a real
world test scenario, we selected a random
set of 1000 MEDLINE citations. Random
sampling was performed using NLM’s
MBR Query Tool [31]. We went through
the year 2008 MEDLINE Baseline Distribu-
tion and selected citations with Data Com-
pleted (DCOM) fields corresponding from
2005/11/16 to 2006/11/14. DCOM field
corresponds to the date processing of the
MEDLINE citation ends (i.e., when MeSH
headings have been added, quality assur-
ance validation has been completed, etc.).

This set of 1000 citations was manually
annotated by two annotators with biologi-
cal domain knowledge. Their task was to
identify citations as being in either the
genetic or nongenetic domain. Annotators
used the following criteria to determine
whether a citation is in the genetic domain:
i) the title and/or abstract discuss one or
more genes, gene transcripts, gene regu-
lation molecules, DNA, RNA, ii) genetic
diseases and syndromes, iii) technology,
techniques, and methods used for genetic
testing. We measured the agreement be-
tween the two annotators before the ad-
judication step using the κ statistic [32].
Consensus voting was then used to achieve
complete agreement between judges.

To draw a boundary between genetic
and nongenetic domain citations, we
plotted predictive accuracy (Acc) against
score values on a training set, and the
threshold parameter (θ) was set to maxi-
mize accuracy. Predictive accuracy is the
proportion of correct predictions to the
total predictions and is defined as follows:

Acc = ,

where TP is the number of true positive
predictions, TN the number of true
negative predictions, FP the number of
false positive predictions, and FN the
number of false negative predictions. The
threshold value was estimated by cross-
validation. Following the 10-fold cross-
validation regime, nine runs were used to

optimize threshold and the rest one was
used as a test set to evaluate predictive ac-
curacy. Given defined threshold, we then
categorized citations in the test set. For
example, all citations for which the deci-
sion score was greater or equal to the spec-
ified threshold value were categorized as
genetic domain citations.

Besides accuracy, the performance
measures recall (Rec), precision (Pre), and
F-measure (F) were used to assess the per-
formance of the categorization algorithm:

Rec = ,

Pre = ,

F = .

The recall measures the proportion of posi-
tive labeled citations (citations are about
genetics) that were categorized as positive,
and the precision measures the proportion
of positive predictions (citations catego-
rized into the genetic domain) that are
correct. The F-measure is the weighted
harmonic mean of precision and recall.

The same cross-validation scheme was
used to evaluate the prediction perform-
ance of the machine-learning algorithms.
Values of evaluation measures were aver-
aged over runs for further reporting.
McNemar’s test [33] was used to test the
statistical difference between chi-square-
based scoring function algorithm and each
of the machine-learning algorithm evalu-
ated. This test was performed by sum-
marizing the classification errors of the al-
gorithms and has a low Type I error (the
probability of incorrectly detecting a dif-
ference when no difference exists).

The computations were carried out in
the R software environment for statistical
computing and graphics [34].

4. Results

The starting point of our algorithm is a fre-
quency profile table of all the MeSH de-
scriptors with statistically significant chi-

square scores, noting which descriptors are
positive indicators and which are nega-
tive. Chi-square feature selection identified
many informative MeSH terms, the pres-
ence of which suggested a genetic or non-
genetic citation. 16,891 out of 24,767
MeSH descriptors were statistically signifi-
cantly different between domains. 3821
(22.6%) of them were statistical signifi-
cantly overrepresented in genetic domain
corpus, while 13,070 (77.4%) were over-
represented in nongenetic domain corpus.
The highest scoring MeSH terms were in-
tuitively reasonable as predictors either of
genetic or nongenetic domain citation. For
example, the main characteristic terms for
genetic domain are ‘Molecular Sequence
Data’, ‘Amino Acid Sequence’, and ‘Base
Sequence’.

Our evaluation corpus contained 1000
citations. Annotators achieved a κ score for
inter-annotator agreement of 0.78. The ci-
tations that were most difficult to catego-
rize were those concerning general bio-
chemistry, proteomics, and metabolomics.
Consensus voting was then used to achieve
complete agreement between judges. The
annotated corpus is publicly available at
our homepage [35] and can serve as a
benchmark for other applications. The per-
centage of genetic citations in this corpus
was 18.6% (186 citations about genetics
and 814 citations about nongenetic topics).
There were 88 citations (8.8%) that con-
tained no MeSH terms and 223 citations
without an abstract field (22.3%). The title
field was present in all the citations in the
evaluation set. We built a join set of ci-
tations in which each citation has a title, ab-
stract and MeSH terms. The final set has
734 citations with 173 citations (23.6%) in
genetic domain. A total of 10,979 MeSH
descriptors were assigned to a set of 734
citations, with average 12.04 MeSH
descriptors per citation (SD = 5.15). All
further computations were done on that
set.

To estimate the quality of the evaluation
corpus and to evaluate the assumption that
the citations from the ‘gene2pubmed’ file
were indicative of genetic domain, we
joined the citations from the manually an-
notated evaluation corpus to those derived
from the ‘gene2pubmed’ file. If a citation in
the evaluation corpus was present in the
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‘gene2pubmed’ file, we labeled it as genetic
citation; otherwise we labeled it as non-
genetic citation. The accuracy of 0.77 with
0.98 recall and 0.78 precision was obtained.
The F-measure was 0.87.

4.1 Results of the Categorization
Algorithm

The output of the categorization process is
a list of decision scores for all the citations.
The score distribution for the 734 citations
is presented in �Figure 1. In �Figure 2 the
predictive accuracy as a function of score
cut-off values is depicted in order to vis-
ualize the performance at different points
along the decision score distribution. The
threshold parameter was set to optimize
predictive accuracy, as described earlier in
the ‘Threshold Optimizations’ subsec-
tion. The maximal training accuracy was
0.85. The corresponding decision score
threshold was θ = 3 for all folds. After
estimating optimal model threshold on
training data, this parameter was used to
generate domain predictions of MEDLINE
citations.

The performance of the chi-square cat-
egorization algorithm was evaluated on the
test subset under the cross-validation re-
gime, described earlier in the ‘Performance
evaluation’ subsection. The proposed algo-
rithm achieved a predictive accuracy of
0.87 with 0.69 recall and 0.64 precision.
The F-measure was 0.66.

4.2 Comparison with Machine-
learning Classifiers

Results on the test data were generated by
SVM, DT, and NB classifiers following
standard bag-of-words representation of
MEDLINE citations using title, abstract,
title+abstract or MeSH terms as prediction
features. We reduced the feature space from
3953; 16,722; and 17,095 words to 116;
4871; and 5484 unique words for title, ab-
stract, and title+abstract field, respectively.
The MeSH descriptors vector space of 3727
features was reduced by applying a list of
noninformative MeSH descriptors, result-
ing in 3704 unique MeSH descriptors. By
this means the noise possibly introduced

into the classifier was eliminated, possibly
improving its performance.

�Table 3 shows a comparison of the
proposed chi-square algorithm with SVM,
DT, and NB classifiers. Classification accu-
racy, recall, precision, and F-measure of the
10-fold cross-validations are presented. Re-
sults suggest that the proposed chi-square-
based algorithm provides more accurate
categorization in genetic and nongenetic

domain than SVM, DT, and NB. Results
were the same when the F-measure was
used to compare the algorithms.

�Table 4 displays results for comparing
the chi-square scoring function algorithm
with the SVM, DT, and NB algorithms for
different representations of MEDLINE ci-
tations. McNemar’s statistics is an average
calculated over the 10 runs. Since all
p-values are greater than 0.05, we cannot
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Fig. 1
Score distribution of
the chi-square-based
scoring function for a
set of 734 MEDLINE
citations

Fig. 2
Calibration plot. The
exact threshold value
(θ = 3) is obtained
by averaging maxi-
mal accuracy over
10 runs of cross-
validation process.



reject the null hypothesis which suggests
that applying SVM, DT, and NB learning
algorithms to construct classifiers for this
application can achieve the same classifi-
cation results. Only in the case of the NB
classifier with MeSH descriptors as rep-
resentative features the chi-square-based
scoring function algorithm performs sta-
tistically significantly better.

5. Discussion
In this paper, we developed and experi-
mentally validated a semi-supervised DC
approach and demonstrated a simple chi-
square-based scoring function algorithm.
The method has been shown to discover
key MeSH descriptors in MEDLINE, which
differentiate between genetic and non-
genetic domains. The fundamental con-
clusions of this study can be summarized as
follows: i) in our particular settings the chi-
square-based scoring function algorithm
proved to be effective for MEDLINE ci-
tation categorization task; ii) the chi-
square-based algorithm is as accurate as
evaluated machine-learning algorithms,
namely SVM, DT, and NB, although the
differences are not statistically significant;
iii) chi-square-based algorithm is easy to
implement into existent text mining sys-
tems.

Our chi-square-based algorithm is a
simple statistical procedure, based on
widely used and well-known chi-square
statistics. In spite of the fact that our results
did not yield statistical significant differ-
ences between the chi-square algorithm
and the benchmark machine-learning al-
gorithms, they are still promising. Further-
more, the chi-square algorithm does not
perform ‘transformations’ on the original
data, possibly affecting reliability of the
categorization process. Our approach does
not use the full text titles or abstracts, so it is
much more efficient. With the exception of
the threshold parameter, no other parame-
ters needed to be tuned in the proposed

approach. Last but not least, our method
does not need a manually tagged training
corpus, which is time-consuming, expen-
sive, and error-prone to construct.

The benchmarking experiments indi-
cate that the categorization results are
competitive with state-of-the-art machine-
learning algorithms like SVM, DT, and NB.
According to our results, SVM was the sec-
ond best algorithm, followed by DT. The
high-dimensional nature of text data has
been shown to be the main reason for bad
performance of many classification meth-
ods [36]. The SVM method is generally the
best choice for high-dimensional feature
representation, such as those for free text,
but requires a lot of parameters to adjust and
is very time-consuming and labor-intensive.
In addition, the major disadvantage of DT is
instability. Small changes in the data often
result in a very different tree and big changes
in prediction performance. The reason for
that is the hierarchical process of tree induc-
tion, where errors made in the splits close to
the root are carried down the entire tree.
However, DT has been overlooked in the do-
main of text categorization and big advan-
tage of DT over the other classifiers is that
they could be visualized as a set of rules ex-
plaining the categorization process. NB was
the worst performing algorithm, which con-
firms previous research that NB is a popular
but not the best algorithm for DC [37].
However, based on the absence of statis-
tically significant differences between the
evaluated approaches we could not be cer-
tain that one of the machine-learning classi-
fiers used would not have performed
better,and MeSH descriptors may not be op-
timal for the task of identifying genetic ci-
tations. However, the results generated with
our method are a promising starting point of
this task. Following Occam, we doubt that
more intricate classifiers should necessarily
be preferred over simple approaches. As a
heuristic, Occam’s razor principle tells us
that the simpler model is generally to be pre-
ferred over a more sophisticated model [38].
This is particularly relevant in practical on-
line applications where large amounts of un-
structured text data have to be processed
quickly and accurately.

Our algorithm requires that the input
documents to be categorized have assigned
MeSH descriptors. That is a limitation for
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Table 3 Performance of the chi-square-based
scoring function algorithm and comparison with
SVM, DT, and NB algorithms. Note: Chi-Square =
proposed chi-square scoring function; SVM = sup-
port vector machines; DT = decision trees; NB =
naïve Bayes; Acc = accuracy; Rec = recall; Pre =
precision; F = F-measure.

Algorithm Acc Rec Pre F

Chi-Square 0.87 0.69 0.64 0.66

SVMTitle 0.81 0.33 0.68 0.45

DTTitle 0.79 0.20 0.74 0.31

NBTitle 0.75 0.56 0.47 0.51

SVMAbstract 0.82 0.36 0.73 0.48

DTAbstract 0.79 0.21 0.74 0.33

NBAbstract 0.77 0.59 0.51 0.54

SVMTitle+Abstract 0.81 0.35 0.72 0.48

DTTitle+Abstract 0.78 0.16 0.65 0.26

NBTitle+Abstract 0.76 0.59 0.49 0.53

SVMMeSH 0.77 0.10 0.58 0.17

DTMeSH 0.79 0.15 0.76 0.25

NBMeSH 0.63 0.97 0.39 0.55

Table 4 Results of McNemar’s test for comparing the chi-square-based algorithm with the SVM, DT,
and NB algorithms. Note: Chi-Square = proposed chi-square scoring function; SVM = support vector
machines; DT = decision trees; NB = naïve Bayes; z0

2 = McNemar’s statistic; p = p-value of McNemar’s
statistic.

Algorithm

Chi-Square – SVM Chi-Square – DT Chi-Square – NB

Feature z0
2 p z0

2 p z0
2 p

Title 0.73 0.39 0.57 0.45 1.42 0.23

Abstract 0.25 0.62 0.40 0.53 1.21 0.27

Title + Abstract 0.44 0.51 0.80 0.37 1.33 0.25

MeSH 1.08 0.30 0.88 0.35 6.02 0.01



documents without MeSH descriptors.
However, our algorithm could be used as a
module in a general information extraction
or retrieval system by using text words in-
stead of controlled vocabulary indexing
terms. Indeed, the immediate goal of this
study was to provide a way to categorize
biomedical literature according to genetic
and nongenetic MEDLINE citations, but
the process to categorize text in another
domain is fairly straightforward. The re-
searcher must first create a frequency table
of words in each of the exploited domains
and then run the algorithm over the docu-
ments. The initial building process of fre-
quency table is the most time-consuming
process, but in principle it has to be done
only once. Once the indexing table is avail-
able, the categorization algorithm is very
fast, taking about four hours for all of
MEDLINE (based on the dimension scale
of the selected MeSH descriptors). We have
not evaluated the performance of our algo-
rithm (regarding classification accuracy
and process speed) when using text words
yet, but we plan do it in the future.

A wide array of statistical and machine-
learning techniques has been applied to
DC. Most of them are based on having
some initial set of class-labeled documents,
which is used to train an automatic catego-
rization model. There has been much prior
work in applying methods to analyzing the
biomedical literature to extract biomedical
data, but relatively little prior work has ad-
dressed the task of screening the entire lit-
erature for particular types of citations. To
the best of our knowledge no one has tried
to generalize the MeSH descriptors in a
manner described in this article. Only a few
researchers have tested their DC systems
using the entire set of MeSH terms. Rubin
et al. [39] developed a curation filter, an
automated method to identify citations in
MEDLINE that contain pharmacogenetics
data pertaining to gene-drug relationships.
They reported F-measures ranging from
0.20 to 0.88 for different experimental set-
tings. DC machinery has also been used in
maintaining systematic reviews in the do-
main of internal medicine [40] and of the
efficacy of drug therapy [41].

There are also some disadvantages of
our chi-square-based categorization ap-
proach. Each MEDLINE citation has an

average of 12 MeSH terms assigned. The
standard deviation estimated on a collec-
tion of 734 randomly selected MEDLINE
citations is very high (SD = 5.15), suggest-
ing a high scattering of the number of
MeSH terms assigned to each citation.
Therefore, the citations with more MeSH
terms assigned are more prone to extreme-
ly positive or extremely negative scores,
which means they are categorized either
into genetic or nongenetic domain with
greater confidence (although the proposed
heuristic scoring could not be directly in-
terpreted as a measure of statistical con-
fidence). Many MeSH terms are also too
specific to be used as valid representatives
of broad topic domains. In addition, the
MeSH terms are related hierarchically, and
frequently both the parent and the child are
assigned to the same citation; this results in
artificially increased or decreased chi-
square decision score.

6. Conclusion and Future
Work
We have proposed a simple chi-square-
based scoring method to categorize MED-
LINE citations according to its genetic rel-
evance. Results of experimental validation
showed that the proposed method is as
good as popular machine-learning algo-
rithms, although the differences are not
statistically significant. Our algorithm
could be easily reimplemented as a module
in a general information extraction system
and may thus be a powerful tool for the
broader research community. The algo-
rithm is currently implemented in the
BITOLA literature-based discovery sup-
port system [42] as a preprocessor for gene
symbol disambiguation process.

The presented approach provides very
good performance, but further slight
modification may allow even better per-
formance. An important aspect that could
be addressed in the future is the better se-
lection of representative corpora. The se-
lection of the corpora is a crucial step in the
methodologies of corpora linguistics, since
it defines the quality of the training dataset.
Ideally for our method, the genetic domain
corpus should contain information rel-
evant only to genetics.An interesting future

research direction is the extension of the
proposed methodology for handling sim-
ultaneously several genetically specific
knowledge sources, which would better re-
flect the genetic domain. There are several
such sources, including Online Mendelian
Inheritance in Man (OMIM), Gene Ontol-
ogy (GO) and Gene Reference Into Func-
tion (GeneRIF) databases. Another tech-
nique that may increase performance is
linking MeSH terms to Unified Medical
Language System (UMLS) concepts and
semantic types. As future work the setting
of the initial weights to characteristic words
should also be studied.
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